
The SLO Handbook

Kristof Beyls <Kristof.Beyls@elis.UGent.be>

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The SLO Handbook
by Kristof Beyls

1.0.0
Copyright © 2006 Kristof Beyls

Abstract

SLO analyzes the causes of poor temporal data locality, and suggests program refactorings that are required to
increase locality. After applying the suggested refactorings, the locality is improved, the number of data cache
misses is typically reduced, and execution speed may be enhanced.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-
Cover Texts.

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

1. Introduction ... 1
1. Comparison between using SLO and more traditional cache profilers ... 1

2. Using SLO .. 5
1. Getting Started: How to start up SLO .. 5

3. Command Reference ... 9
1. The reuse distance histogram window ... 9

1.1. The File Menu ... 9
1.2. The View Menu .. 11

2. The source code window .. 13
2.1. The File Menu ... 13
2.2. The Window Menu ... 14
2.3. The View Menu .. 14
2.4. Other Interactive Actions .. 15

2.4.1. Interactive Actions in the Histogram window ... 15
2.4.2. Interactive Actions in the Source Code window .. 15

3. Command line options ... 15
4. Preferences file options .. 17

4. Creating .slo.zip files ... 18
1. Overview ... 18
2. Installing the GCC-SLO compiler .. 18
3. Instrumenting programs using GCC-SLO .. 19

3.1. Environment variables ... 20
4. Syntax of the files generated by GCC-SLO .. 20

4.1. Syntax of the BRD file .. 20
4.2. Syntax of the .bb_info files ... 20
4.3. Syntax of the .function_info files ... 20
4.4. Syntax of the .memaccess_info files ... 21

5. Example of Using SLO to optimize some SPEC2000 programs .. 22
1. Optimizing 179.art .. 22
2. Optimizing 181.equake .. 22
3. Optimizing 175.vpr ... 22

6. Questions and Answers .. 23
7. Credits and License ... 24

iii

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 1. Introduction
SLO helps you to identify the source code constructs that generate poor temporal data locality. Poor temporal data
locality leads to many data cache misses and slow program execution. SLO aims to be a better cache analysis tool.
Most other cache profilers indicate the source code lines that generate most cache misses. However, eliminating
the cache misses often requires code changes (refactorings) in completely different statements, functions or even
source files. In contrast, SLO highlights the loops and other code constructs that must be refactored to improve
the data locality so that the cache misses are turned into cache hits.

Basically, SLO analyzes for each data reuse, which code is executed between use and reuse. Based on this analysis,
it suggests an appropriate refactoring to improve the locality.

Please report any problems or feature requests to <Kristof.Beyls@elis.UGent.be>, or use the bug report and
feature request features at the web-site http://www.sourceforge.net/projects/slo.

1. Comparison between using SLO and more traditional
cache profilers
The operation of SLO is best illustrated by comparing it to other cache profiling tools. Using the example code
below. The program below calculates inproducts and summations of all elements on a number of arrays.

double inproduct (double *X, double *Y, int len)
{
 int i; double result=0.0;
 for(i=0; i<len; i++)
 result += X[i]*Y[i];
 return result;
}

double sum (double *X, int len)
{
 int i; double result=0.0;
 for(i=0; i<len; i++)
 result += X[i];
 return result;
}

void f
(double **X, double **Y, double** Z, int len, int N)
{
 int i,j;
 for (i=0; i<N; i++)
 for (j=0; j<N; j++) {
 double inp = inproduct (X[i],Y[j],len);
 double sumX = sum (X[i],len);
 double sumY = sum (Y[j],len);
 Z[i][j] = inp+sumX+sumY;
 }
}

Most other cache profiling tools highlight the source code lines where most cache misses occur. For example,
Valgrind reports the following source code lines where cache misses occur:

 L1 L2

 . . double inproduct (double *X, double *Y, int len)
 . . {
 . . int i; double result=0.0;
 0.0% 0.0% for(i=0; i<len; i++)
 50.0% 50.0% result += X[i]*Y[i];
 . . return result;

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sourceforge.net/projects/slo
http://valgrind.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 . . }
 . .
 . . double sum (double *X, int len)
 . . {
 . . int i; double result=0.0;
 0.0% 0.0% for(i=0; i<len; i++)
 50.0% 50.0% result += X[i];
 . . return result;
 . . }
 . .
 . . void f
 . . (double **X, double **Y, double** Z, int len, int N)
 . . {
 . . int i,j;
 0.0% 0.0% for (i=0; i<N; i++)
 0.0% 0.0% for (j=0; j<N; j++) {
 0.0% 0.0% double inp = inproduct (X[i],Y[j],len);
 . . double sumX = sum (X[i],len);
 . . double sumY = sum (Y[j],len);
 0.0% 0.0% Z[i][j] = inp+sumX+sumY;
 . . }
 . . }

Valgrind shows that half of the cache misses occur insided the loop in inproduct; while the other half occur inside
the loop in sum. While this information clearly shows where the misses occur, it is not directly obvious how to
refactor the program so that these misses disappear.

In contrast, SLO analyzes cache misses in a more abstract way. Most cache misses occur on data that is reused,
but for which the previous use is so far in the past, that the data has been evicted from the cache by other data that
has been accessed since. SLO profiles the data reuses, and a histogram of reuses and their corresponding distance
is generated, like the histogram below.

The histogram shows that for this particular run of the program, all reuses occur at distances larger than 219.

Note

The reuse distance estimates the minimum cache size needed for the data to remain in the cache between
use and reuse. E.g., for a reuse with distance 219, the cache must be able to hold 219 data elements.
Therefore, the cache missing reuses can easily be read from the histogram as all reuses that are at a distance
larger than the cache size.

The coloured background area, indicated with L1 and L2 show no reuses at those distances, meaning no reuses
produce cache hits in either the L1 cache or the L2 cache. The different colors of the bars in the histogram indicate

2

Introduction

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://valgrind.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

different refactorings that are needed for nearing the reuses. Bringing reuses closer together will move them to the
left in the histogram, into the areas where L2 or even L1 cache hits occur. When you use the mouse and click on
one of the colored bars, the corresponding refactoring is highlighted in the code.

The screenshot shows that the blue reuses (at distance 220 in the histogram) can be shortened by merging the
computations in inproduct with the second call to sum. Similarly, the green reuses can be shortened by merging
the computations of inproduct with the first call to sum. After merging the computations of in inproduct and
sum, the code looks as follows:

void f
(double **X, double **Y, double** Z, int len, int N)
{
 int i,j;
 for (i=0; i<N; i++)
 for (j=0; j<N; j++) {
 double inp=0.0, sumX=0.0, sumY=0.0;
 double *Xi=X[i], *Yj=Y[j];
 int i2;
 for(i2=0; i2<len; i2++) {
 inp += Xi[i2]*Yj[i2];
 sumX += Xi[i2];
 sumY += Yj[i2];
 }
 Z[i][j] = inp+sumX+sumY;
 }
}

SLO also allows to visually compare the histograms. In the screenshot below, the reuse distance histogram of the
original code is shown in blue, while the reuse distance histogram of the optimized code is shown in red. As a
result of the fusion, the large blue peak at distance 220 has been moved to distance 22. Therefore, those reuses now
generate L1 cache hits instead of L2 misses (see background colors). The resulting code runs about two times
faster on a Pentium4.

3

Introduction

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4

Introduction

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 2. Using SLO
The input to SLO is a zip-file containing the source code of the program and the results of a profiling run. How
to create this zip-file is documented in a separate chapter (Chapter 4, Creating .slo.zip files) , as it requires compiling
your program with a special GCC-compiler. In this chapter, it is assumed that you already created such a .slo.zip
file. Alternatively, you may download some of the example .slo.zip files from the SLO homepage to experiment
with before profiling your own application.

1. Getting Started: How to start up SLO
1. There are a number of ways to start SLO:

From the command line e.g. java -jar slo-1.0.jar example1.slo.zip.

From the web using web-start By having Java webstart installed in your web browser and following
the link http://slo.sourceforge.net/webstart/slo.jnlp. Using webstart
ensures that you are always using the latest version available.

If you don't specify a .slo.zip file on the command line, or when you start SLO using the webstart-link, a file
selector pops up, as shown in the screenshot below. In this file selector, choose a .slo.zip file to continue.
SLO cannot operate without a .slo.zip file!

2. After the .slo.zip file has been parsed (this can take a few seconds), two windows pop up: a source file window,
and a histogram window containing the reuse distance histograms. For the input file example1.slo.zip,
available from SLO's homepage, these windows look as follows:

5

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.elis.ugent.be/~kbeyls/slo
http://slo.sourceforge.net/webstart/slo.jnlp
http://slo.sourceforge.net/examples/example1.slo.zip
http://slo.sourceforge.net/#examples
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3. Now you can start exploring the analysis results. The easiest way is to simply click on the colored bars in the
histogram. Typically, you will start by exploring the long reuse distances. In the case of example1.slo.zip,
the blue and the red reuse distances in the histogram at distance 218. Use your mouse and click on the red bar
in the histogram. As a result, the corresponding tiling transformation (indicated as ex TILE L24 in the legend),
will be highlighted in the source code, and third window with a histogram will pop up. That third window
contains the reuse distance histogram of all reuses that can be optimized by the ex TILE L24-optimization.
It looks as follows:

6

Using SLO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://slo.sourceforge.net/examples/example1.slo.zip
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4. After checking the loop that needs to be tiled in the source code, and understanding why this is needed, you
may also want to check the blue optimization. Clicking on the blue optimization will also highlight this op-
timization in the source code, and pop up a window with the reuse distance histogram of the reuses optimized
by the blue optimization:

7

Using SLO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tip

You may clear all the currently highlighted optimizations by clicking the menu-item View → "Clear
highlighted optimizations" in the main histogram window. This is helpful when too many optimiza-
tions are highlighted at once, and they clutter each other.

8

Using SLO

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 3. Command Reference
1.The reuse distance histogram window

1.1.The File Menu

File → Export in SVG format outputs the histogram in SVG (Scalable Vector Graphics) format. The file
that the histogram is written to is selected through a file selector dialog that
pops up.

File → Export in EPS format outputs the histogram in an EPS (Encapsulated Postscript) format. The file
that the histogram is written to is selected through a file selector dialog that
pops up.

File → Export in PNG format outputs the histogram in an PNG (Encapsulated Postscript) format. The file
that the histogram is written to is selected through a file selector dialog that
pops up. The file selector allows to set the resolution and width and height
of the exported PNG drawing of the histogram.

File → Output Analysis data to CSV
files

outputs the reuse distance data to a comma separated value (CSV) to a
number of CSV-files in a newly created directory. The directory to store
the CSV-files in is selected through a file selector dialog that pops up. An
example of such a CSV file for the example1.slo.zip file is shown in
Table 3.1, “Example of exported CSV file: example1.slo.zip.noncumul.ab-
solute.csv”. It contains the histogram in table form. Eight of these CSV file
are written, one for each possible combination of with or without "absolute",
"noncumul" and "summary". "absolute" corresponds to a CSV file with
absolute values for the number of reuses at a certain distance for a certain
refactoring. "relative", or non-"absolute", corresponds to a CSV-file where
the relative number of reuses at a certain distance are encoded. This corres-
ponds to the histogram after clicking View "Show Relative Histogram". For
each distance, the numbers add up to 1. "noncumul" contains the regular
histograms, while the "cumul"-versions contain the reverse-cumulative
histograms, corresponding to clicking View "Reverse Cumulative Histo-
gram". In the "summary" CSV-files, respectively all tiling-like, fusion-like,
and function-fusion-like optimizations are combined.

File → Compare with other ... Allows to compare the reuse distance histogram with the histogram in an-
other .slo.zip file. After clicking this menu option, a file selector pops up
to select another .slo.zip file. After selecting, the histograms from both
.slo.zip files are shown in a single chart. This comes in handy, e.g., to see
in what way the reuse distance histogram has changed after a refactoring.
An example is shown in Figure 3.1, “Screenshot of comparison between
two reuse distance histograms”

9

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://slo.sourceforge.net/examples/example1.slo.zip
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Figure 3.1. Screenshot of comparison between two reuse distance histograms

10

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3.1. Example of exported CSV file: example1.slo.zip.noncumul.absolute.csv

ex_FUSE_B18_B18ex_FUSE_B12_B12ex_TILE_L14ex_FUSE_L14_L20ex_TILE_L24reuse_distance

0.00.00.00.00.00.0

500000.0999990.00.00.00.01.0

0.00.0999980.00.00.02.0

0.00.00.00.00.03.0

0.00.00.00.00.04.0

0.00.00.00.00.05.0

0.00.00.00.00.06.0

0.00.00.00.00.07.0

0.00.00.00.00.08.0

0.00.00.00.00.09.0

0.00.00.00.00.010.0

0.00.00.00.00.011.0

0.00.00.00.00.012.0

0.00.00.00.00.013.0

0.00.00.00.00.014.0

0.00.00.00.00.015.0

0.00.00.00.00.016.0

0.00.00.0999990.0899991.017.0

0.00.00.00.09.018.0

0.00.00.00.00.019.0

0.00.00.00.00.020.0

0.00.00.00.00.021.0

0.00.00.00.00.022.0

0.00.00.00.00.023.0

0.00.00.00.00.024.0

0.00.00.00.00.025.0

0.00.00.00.00.026.0

0.00.00.00.00.027.0

0.00.00.00.00.028.0

0.00.00.00.00.029.0

0.00.00.00.00.030.0

0.00.00.00.00.031.0

0.00.00.00.00.032.0

1.2.The View Menu

View → Highlight 10 most important
optimizations

Highlights the 10 most important optimizations in the source code, as if the
user had individually clicked on the 10 most important optimizations in the
histogram. The most important optimizations are determined by computing
a weight for each optimization. The larger the weight, the more important
the optimization is considered to be. The formula to compute this weight
is:

11

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

View → Clear highlighted optimiza-
tions

Deletes all indications in the source code of the optimizations that have been
highlighted so far.

View → Set chart ranges Pops up the following dialog that lets you set the lower and upper bounds
of the X and Y axes in the histogram.

View → Reverse cumulative histo-
gram

When this option is selected, the reverse cumulative histogram is shown,
instead of a regular histogram. In a reverse cumulative histogram, all reuses
that occur at larger distances are represented in each bar, instead of only the
reuses with the same distance. In this view, all misses for a specific cache
size can more easily be determined. E.g. consider the figures below show
both the normal(left) and the reverse cumulative histograms(right) of a
certain program run. The size of the L1 cache is indicated by a vertical black
line. To find out which reuses miss the cache in the left, normal, histogram,
you need to look at all bars to the right of the L1 cache size. In contrast, to
find out the cache missing reuses fromthe reverse cumulative histogram
(right), you just need to look to the reuses that are displayed where the L1
cache size is drawn. (TODO: look for a screenshot where the advantage of
using a reverse cumulative histogram is more obvious)

View → Configure cache sizes This option is used to set the cache sizes that are drawn in the background
of the histogram view. An example of two different modes of cache size
indication is shown in Figure 3.2, “Screenshot of two possible indications
of cache sizes in the reuse distance histogram: by interval and by borders”.
After clicking, a dialog pops up to set the cache sizes, an example of which
is also found in Figure 3.2, “Screenshot of two possible indications of cache
sizes in the reuse distance histogram: by interval and by borders”. From top
to bottom, the dialog contains following controls:

Font size of cache labels controls the size in pixels of the
"L1", "L2" etc. labels of the cache
size in the histogram

Nr. of cache levels controls the number of cache levels
indicated

Highlight cache size interval/border controls whether cache sizes are
visualized by a colored background

12

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

(interval, see first screenshot above),
or by vertical lines at the cache size
boundaries (borders, see second
screenshot above).

Size of Level x For each of the number of cache
levels selected above, a slider is used
to determine the size of the cache
level. The size is expressed as the
log2 of the reuse distance. On the
right, the 'Choose color' button al-
lows to select the color to be used
for the background, when cache sizes
are visualized by a colored back-
ground (see interval mode above).

View → Write cache sizes to file pops up a file selector to save the cache size info to a file. Make sure to end
the name of the files with '.cachesizes'

View → Read cache sizes from file pops up a file selector to load an earlier saved the cache size info.

Figure 3.2. Screenshot of two possible indications of cache sizes in the reuse distance
histogram: by interval and by borders

2.The source code window

2.1.The File Menu

File → Export complete in SVG
format

outputs the contents of the source code window in SVG (Scalable Vector
Graphics) format. Also the non-visible part of the window is exported.

File → Export visible in SVG format outputs the contents of the source code window in SVG (Scalable Vector
Graphics) format. Only the visible part of the window is exported.

File → Export in EPS format outputs the contents of the source code window in EPS (Encapsulated
Postscript) format.

13

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

File → Exit exits SLO.

2.2.The Window Menu

Window → Options Window shows up a dialog to set preferences about the transparency of arrows and
the font size of the source text. (see screenshot ???)

2.3.The View Menu

View → Transparent arrows controls whether arrows are transparent or not.

View → Show linenumber show linenumbers in the source code

View → Arrow thickness follows its
weight.

when unselected, all arrows have the same width. When selected, the width
(thickness) of the arrows depend on the number of reuses they represent.
The thickness is proportional to the percentage of reuses that the arrows
represents of the number of reuses that are optimized by the refactoring it
belongs to. (For each suggested optimization/refactoring, multiple arrows
may be present). An example is given in screenshot.

View → Decrease minimum arrow
length

decreases the minimum length of an arrow. This is mostly important for
visualizing arrows for which the source and sink is the same source code.

View → Increase minimum arrow
length

increases the minimum length of an arrow.

View → Zoom xxx for each source code file, there's a menu item with 'Zoom xxx', where xxx
is the source code file name. When the menu option is selected, that file is
zoomed, i.e. the source code is drawn (the font size can be selected using
the options window, see screenshot ???). When the menu item is unselected,
each line in the source code file is represented by a line that is only a pixel
in height.

14

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.4. Other Interactive Actions

2.4.1. Interactive Actions in the Histogram window

In the histogram window, when clicking on a bar of a specific color, the corresponding optimization is highlighted
in the source code window.

2.4.2. Interactive Actions in the Source Code window

When clicking an arrow with the mouse, a menu with two options appears: see screenshot???. The first option,
"Set arrow appearance" pops up a dialog box, that allows to set the angle in which the arrow starts and ends. It
also allows to set the length of the arrow. The second option, "Show RDH", pops up a window with the histogram
of reuse distances of the reuses represented by that arrow.

3. Command line options
java -jar slo.jar [[-c] | [--cut-off-percentage]percentage] [--default-cache-sizes-file filename.cachesize]
[--x-lowerbound x0] [--y-lowerbound y0] [--x-upperbound x1] [--y-upperbound y1]
[--dump-histogram-to-png-file filename.png] [--png-resolution resolution]
[--png-width width] [--png-height height]
[--dump-to-html dirname] [--max-nr-series-drawn nrSeries]

15

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

[--read-preferences filename.xml] [--store-preferences filename.xml]
[--dump-nr-refactorings-needed-vs-cachesize percentage] filename.slo.zip

-c percentage This option specifies that only percentage percent of all reuses need to be
read. The less important reuse information doesn't need to be read in. This
can be useful to reduce the memory usage of SLO.

--cut-off-percentage percent-

age

See option -c

--default-cache-sizes-file

filename.cachesize

At start-up, read in cache size info from filename.cachesize file file-
name.cachesize.

--x-lowerbound x0 Set default lower bound for X-axis in histogram to log2(x0).

--y-lowerbound y0 Set default lower bound for Y-axis in histogram to y0.

--x-upperbound x1 Set default upper bound for X-axis in histogram to log2(x1).

--y-upperbound y1 Set default upper bound for Y-axis in histogram to y1.

--dump-histogram-to-png-file

filename.png

Take a screenshot of the reuse distance histogram, and dump it in PNG file
format to file filename.png. After dumping the histogram, SLO exits.

--png-resolution resolution Set the resolution of the png-file dumped by option --dump-histogram-
to-png-file to resolution dpi.

--png-width width Set the width of the png-file dumped by option --dump-histogram-to-
png-file to width inches.

--png-height height Set the height of the png-file dumped by option --dump-histogram-to-
png-file to height inches.

--dump-to-html dirname Create a web-page with the reuse distance histogram. In the web-page, when
a bar is clicked in the reuse distance histogram, and JavaScript is enabled
in the browser, the corresponding suggested refactoring is highlighted in a
second browser frame. All files are dumped to directory dirname. The
browse the result with a web-browser, browse to file index.html in directory
dirname. After generating the HTML pages, SLO exits.

--max-nr-series-drawn nrSeries The number of refactorings suggested by SLO may grow large for some
complex programs. As a result, the reuse distance histogram contains many
different colored bars. This may slow down the interactive drawing of the
histogram too much. Therefore, this option allows to limit the number of
colored bars drawn to nrSeries, so that SLO reacts quicker to user interac-
tion. By default, the value of nrSeries is 40. All other less-important refact-
orings are combined into a single category named "other", and are drawn
in black.

--read-preferences file-

name.xml

Reads preferences from the XML-file preferences.xml. For the list of
preferences that can be set: see Section 4, “Preferences file options”

--store-preferences file-

name.xml

Writes preferences to the XML-file preferences.xml. The file is written
after exiting SLO. For the list of preferences that can be set: see Section 4,
“Preferences file options”

--dump-nr-refactorings-needed-

vs-cachesize percentage

Writes out to standard output the minimum number of refactorings that must
be applied to optimize at least percentage percent of all reuse distance
longer than a given cache size. After dumping the table to stdout, SLO exits.

16

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4. Preferences file options
Some controlling variables that are not easily specified on the command line are stored as "user preferences". This
means, that the settings controlled by the variables below remain persistent between different invocations of the
SLO tool. Furthermore, these options can be altered by the command line options --read-preferences. The
easiest way to change the options, if they are not settable from some of the menu's in SLO, or from another command
line option, is to first run SLO with the --store-preferences command line option. This dumps all options to
an XML-file. Then, change the value of the variables that you want to change. Subsequently, run SLO again with
--read-preferences, so that the preferences are read from the altered XML file. This will result in the preferences
read to become persistent for all following runs of SLO, until you specifically change these preferences again. An
overview of preference variables is shown in Table 3.2, “Overview of preference variables”.

Note

Most of the options below should become changeable from menu options or from the command line in
future versions of SLO. Currently, most of them are only settable through the --read-preferences option
since this can be implemented more quickly than adding menu options. When it is determined that the
controlling variables are truely useful, they will somehow be settable from menu options are command
line options.

Table 3.2. Overview of preference variables

MeaningPreference variable

Specifies the thickness of cache size markers in the reuse
distance histogram, when the cache sizes are indicated
by lines, see screenshot Figure 3.2, “Screenshot of two
possible indications of cache sizes in the reuse distance
histogram: by interval and by borders”. The thickness is
indicated in number of pixels.

CacheSizesValueMarkerStrokeThickness

Boolean value, controlling whether the title in the reuse
distance histogram window should be displayed. When
set to true, the title displays the name of the .slo.zip file
and the distance metric (reuse distance or reference dis-
tance)

DisplayHistogramVSReuseDistanceChartTitle

controls the maximum number of series drawn in the
reuse distance histogram. Also see command line option
--max-nr-series-drawn

OptimizationsVsReuseDistancesPlotNrSeriesVis-

ibleInLegend

controls the width (in number of pixels) of the histograms
generated in the HTML output. Also see command line
option --dump-to-html

HTMLOverallHistogramWidth

controls the height (in number of pixels) of the histo-
grams generated in the HTML output. Also see command
line option --dump-to-html

HTMLOverallHistogramHeight

17

Command Reference

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 4. Creating .slo.zip files
1. Overview
The input to SLO is a zip-file, ending with extension .slo.zip. This zip-file is created by instrumenting the program
that you want to optimize using the GCC-SLO compiler with option -fslo-instrument. During compilation a
number of files are generated that describes the source locations of memory accesses, basic blocks, functions and
their control flow graphs. After running the instrumented program, a file with name BRD will be created. This file
contains all recorded run-time reuse distance information. These files then need to be combined in a zip file. An
overview of the different kinds of files in the .slo.zip file is given below:

source code files The source code files contain the source code of your program, so that SLO can
show suggestions in your source code.

.bb_info files For each compiled file source.c, the .slo.zip file contains a source.c.bb_info file.
This file contains information generated by the GCC-SLO compiler about the
source code locations of all the basic blocks in the program. The syntax of these
files is described in Section 4.2, “Syntax of the .bb_info files”.

.function_info files For each compiled file source.c, the .slo.zip file contains a source.c.function_info
file. This file contains information generated by the GCC-SLO compiler about
the functions in the source file, the basic blocks they contain and their control
flow graphs. The syntax of these files is described in Section 4.3, “Syntax of the
.function_info files”.

.memaccess_info files For each compiled file source.c, the .slo.zip file contains a source.c.memac-
cess_info file. This file contains information generated by the GCC-SLO compiler
about the source locations of the memory references in the source file. The
syntax of these files is described in Section 4.4, “Syntax of the .memaccess_info
files”.

BRD file This file contains all reuse distance histogram information needed by SLO to
compute the reuse distance histograms, associated refactorings and associated
arrows. This BRD file is created by running the program that is instrumented
by the GCC-SLO compiler. The syntax of this file is described in Section 4.1,
“Syntax of the BRD file”.

2. Installing the GCC-SLO compiler
The current GCC-SLO compiler is based on the GNU GCC compiler version 4.1. It has been extended to recognize
option -fslo-instrument. When this option is used during compilation, all necessary compile-time information
for SLO is dumped to .*_info files, and the resulting binary code is instrumented so that all necessary run-time
information about reuses and their distance is recorded to a BRD file. The first step in analyzing your own programs
with SLO is installing the GCC-SLO compiler, so that you can instrument your own program with it. The GCC-
SLO compiler can be downloaded from following the download link at http://www.sourceforge.net/projects/slo.
At the time of writing, the latest release is gcc-slo-1.0.1-4.1.0.tar.gz.

Currently, no binaries are distributed: the GCC-SLO compiler is only distributed as source code. To build the
compiler, you need the same software and libraries installed, as you would need to build the GCC compiler for C,
C++ and Fortran. The prerequisites for building GCC are listed at http://gcc.gnu.org/install/prerequisites.html.
Once you are sure that the prerequisites are met, the compiler can easily be built by running the script build-gcc-
slo.sh included in gcc-slo-1.0.1-4.1.0.tar.gz. The script automatically builds the compiler for you, and
installs it in $HOME/gcc-slo.

18

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://gcc.gnu.org
http://www.sourceforge.net/projects/slo
http://gcc.gnu.org/install/prerequisites.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3. Instrumenting programs using GCC-SLO
How to instrument your own programs with GCC-SLO is easiest explained by giving an example. Below, we'll
show how to create example1.slo.zip, the example that is used for most of the screenshots in this manual. If
you would like to follow these steps on your own computer, download example1.tar.gz at url http://slo.source-
forge.net/examples/example1.tar.gz, and unpack it. The file example1.slo.zip will be build by running GNU
make. The contents of the Makefile is as follows:

 1 CC=$(HOME)/gcc-slo/bin/gcc-slo
 CCC=$(HOME)/gcc-slo/bin/g++-slo
 INSTR_FLAG= -O3 -fno-inline -fslo-instrument
 INSTR_LINK_OPTIONS= -static -lrd
 5
 all: example1 example1.slo.zip

 clean:
 rm *.slo_instr_o *.o example1 example1_slo_instr *_info BRD example1.slo.zip
 10
 %.o: %.c
 $(CC) -O2 -c -o $@ $<

 %.slo_instr_o: %.c
 15 $(CC) $(INSTR_FLAG) -c -o $@ $<

 example1: example1.o make_vec.o
 $(CC) -o $@ example1.o make_vec.o -lm

 20 example1_slo_instr: example1.slo_instr_o make_vec.o
 $(CCC) -o $@ example1.slo_instr_o make_vec.o $(INSTR_LINK_OPTIONS) -lm

 BRD: example1_slo_instr
 ./example1_slo_instr 1000
 25
 example1.slo.zip: BRD
 zip $@ BRD example1.c example1.c.bb_info example1.c.function_info \
 example1.c.memaccess_info

Below, the lines in the Makefile are explained one by one. Following this explanation shows how the ex-
ample1.slo.zip is built step by step:

CC=$(HOME)/gcc-slo/bin/gcc-slo This sets variable CC to point to the gcc-slo C compiler.

CCC=$(HOME)/gcc-slo/bin/g++-

slo

This sets variable CCC to point to the g++-slo C++ compiler.

INSTR_FLAG= -O3 -fno-inline -

fslo-instrument

This sets INSTR_FLAG to contain the optimization flags during instrumenting
compilation. The flag -fslo-instrument has the effect that all memory
accesses, function entries and exits and basic block transitions will be instru-
mented appropriately. Furthermore, at compile time, for each source code
file, the .bb_info, .function_info and .memaccess_info will be generated.
The options -O3 is the regular -O3 option of GCC. The option -fno-inline
is necessary, since otherwise the instrumenter will not see function bound-
aries of functions that were inlined.

INSTR_LINK_OPTIONS= -static -

lrd

This sets variable INSTR_LINK_OPTIONS to contain the necessary link time
options for profiling applications. The option -lrd links library librd which
contains the necessary code to measure reuses, their distances and all other
necessary run-time measurement. Option -static makes sure that library
librd is statically linked in the final executable.

%.o: %.c Describes the default way to compile a .c-file into a .o-file, without instru-
menting.

19

Creating .slo.zip files

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://slo.sourceforge.net/examples/example1.slo.zip
http://slo.sourceforge.net/examples/example1.tar.gz
http://slo.sourceforge.net/examples/example1.tar.gz
http://slo.sourceforge.net/examples/example1.tar.gz
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

%.slo_instr_o: %.c Describes how a .c-file can be compiled with the necessary instrumentation.
Instead of generating a .o file, the filename ends in .slo_instr_o.

example1: example1.o

make_vec.o

Describes the default way to create executable example1, without instru-
mentation

example1_slo_instr: ex-

ample1.slo_instr_o make_vec.o

Describes how to compile example1_slo_instr, where all code in ex-
ample1.c is instrumented. Note that the code in make_vec.c is not instru-
mented, since make_vec.o is used instead of make_vec.slo_instr_o.
Usually, it is best to instrument all your source code files.

BRD: example1_slo_instr The BRD file contains all reuse information as measured by profiling the in-
strumented program.

example1.slo.zip: BRD Describes that the example1.slo.zip file must contain the BRD file, all
source code files and all *_info files generated at compile time.

3.1. Environment variables

A number of environment variables influence the profiling process. To influence the characteristics that are
measured, set the following environment variables before running the instrumented program.

RDLIB_MEASURE_TRUE_RE-
USE_DISTANCE

If this environment variable is set to a value different from 0, the distance
between reuses is measured in terms of "reuse distance", i.e. the number of
different data elements accessed between both reuses. Otherwise, the distance
is measured by "reference distance" a.k.a. "time distance", which is the total
number of accesses between both reuses. The measurement of "reference
distance" is much faster than the measurement of "reuse distance". On the
other hand, "reuse distance" has a clearer connection with cache behavior.

RDLIB_EXPORT_TRACE If this variable is set, during profiling the trace of memory accesses will be
saved to a file. The name of the file is the value that this variable is set to.
The trace file is a binary file, consisting of a sequence of memory accesses.
For each memory access, the following bytes are written to the trace. First,
the address of the accessed address is written, which is sizeof(void*)
bytes long. Next, an identifier for the instruction generating the memory
access is written, which is sizeof(int) bytes long.

RDLIB_EX-
PORT_TRACE_FLUSH_AFTER_EACH_AC-
CESS

If this variable is set to a value different from 0, and RDLIB_EXPORT_TRACE
is set, the memory access trace will be flushed to disk after each memory
access. This slows down the tracing considerably, but can be handy for de-
tecting bugs.

4. Syntax of the files generated by GCC-SLO

4.1. Syntax of the BRD file

TODO

4.2. Syntax of the .bb_info files

TODO

4.3. Syntax of the .function_info files

The .function_info file represent the control flow graphs of all functions encountered by gcc-slo while compiling
a single source file. An example .function_info file is shown in Example 4.1, “.function_info file contents example”.
The formal syntax is described as follows, with the meaning in comments:

20

Creating .slo.zip files

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

function-info-file function-info* // a function-info file contains a list of function-info's, which each
contains info about a single function

function-info (string basic-block-info*) // function-info describes a single function. The
string contains the function name. Then a list of basic-block-info's follows describing
the different basic blocks and how they are linked in the control flow graph.

string " [^"]* " // A string is any sequence of characters between double quotes

basic-block-info (natural = hexnumber hexnumber*) // basic-block info encodes a single basic
block in the function, and shows which basic blocks are successors in the control
flow graph. The encoding is a little bit special: The natural represents the basic block
number. In each function, the basic block are typically numbered from 0. This number
corresponds with the basic block numbers found in .bb_info and BRD files. In the
.function_info file, each basic block is also identified by a hexadecimal number. The
first hexadecimal number, i.e., the one after the equals sign, is the hex-number for
this basic block. The following hexadecimal numbers are the hexnumbers for the
successors in the control flow graph.

natural [0-9]+

hexnumber (0x | 0X)? [0-9|a-f|A-F]+

Example 4.1. .function_info file contents example

(1 "gnu_dev_major" (0=0xb7d6c050 0xb7d6c0f0) (2=0xb7d6c0f0))
(2 "gnu_dev_minor" (0=0xb7d6c230 0xb7d6c2d0) (4=0xb7d6c2d0))
(3 "gnu_dev_makedev" (0=0xb7d6c460 0xb7d6c500) (6=0xb7d6c500))
(4 "ex" (0=0xb7d89b90 0xb7d89c30) (8=0xb7d89c30 0xb7d89eb0) (10=0xb7d89c80 0xb7d89d20)
 (12=0xb7d89cd0 0xb7d89d20) (14=0xb7d89d20 0xb7d89cd0 0xb7d89d70) (16=0xb7d89d70 0xb7d89e10)
 (18=0xb7d89dc0 0xb7d89e10) (20=0xb7d89e10 0xb7d89dc0 0xb7d89e60) (22=0xb7d89e60 0xb7d89eb0)
 (24=0xb7d89eb0 0xb7d89c80 0xb7d89f00) (26=0xb7d89f00))
(5 "main" (0=0xb7d96410 0xb7d964b0) (28=0xb7d964b0 0xb7d96500 0xb7d96550) (30=0xb7d96500 0xb7d8ee6c)
 (31=0xb7d8ee6c 0xb7d8eea0) (33=0xb7d8eea0) (34=0xb7d96550 0xb7d90b40) (35=0xb7d90b40 0xb7b595c8)
 (37=0xb7b595c8 0xb7b594b0) (38=0xb7b594b0 0xb7b595f0) (39=0xb7b595f0 0xb7b594d8) (40=0xb7b594d8 0xb7d8efa4)
 (41=0xb7d8efa4 0xb7d93444) (43=0xb7d93444))

4.4. Syntax of the .memaccess_info files

TODO

21

Creating .slo.zip files

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 5. Example of Using SLO to
optimize some SPEC2000 programs
In this chapter, a few examples will be shown on how SLO was used to optimize the temporal data locality in a
number of the programs in the SPEC2000 benchmark.

1. Optimizing 179.art
TODO

2. Optimizing 181.equake
TODO

3. Optimizing 175.vpr
TODO

22

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 6. Questions and Answers
TODO

23

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chapter 7. Credits and License
SLO

Program copyright 2005--2006 Kristof Beyls <Kristof.Beyls@elis.ugent.be>

Contributors:

Documentation Copyright (c) 2006 Kristof Beyls <Kristof.Beyls@elis.ugent.be>

24

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

